

Programmierung und Deskriptive Statistik

BSc Psychologie WiSe 2021/22

Prof. Dr. Dirk Ostwald

(10) Maße der Variabilität

Datum	Einheit	Thema
14.10.2021	Einführung	(1) Einführung
21.10.2021	R Grundlagen	(2) R und RStudio I
28.10.2021	R Grundlagen	(2) R und RStudio II
04.11.2021	R Grundlagen	(3) Vektoren
11.11.2021	R Grundlagen	(4) Matrizen
18.11.2021	R Grundlagen	(5) Listen und Dataframes
25.11.2021	Deskriptive Statistik	(6) Datenmanagement
02.12.2021	Deskriptive Statistik	(7) Häufigkeitsverteilungen
09.12.2021	Deskriptive Statistik	(8) Verteilungsfunktionen und Quantile
16.12.2021	Deskriptive Statistik	(9) Maße der zentralen Tendenz
	Weihnachtspause	
13.01.2022	Deskriptive Statistik	(10) Maße der Datenvariabilität
20.01.2022	Inferenzstatistik	(11) Anwendungsbeispiel
27.01.2022	Inferenzstatistik	(11) Anwendungsbeispiel
25.02.2022	Klausurtermin	G26 - H1, 9:00 - 10:00 Uhr
Jul 2022	Klausurwiederholungstermin	

Spannbreite Stichprobenvarianz Stichprobenstandardabweichung Selbstkontrollfragen

Spannbreite

Stichprobenvarianz

Stichprobenstandardabweichung

Selbstkontrollfragen

Spannbreite

Definition (Spannbreite)

 $x=(x_1,...,x_n)$ sei ein Datensatz. Dann ist die *Spannbreite* von $x_1,...,x_n$ definiert als

$$S := \max(x_1, ..., x_n) - \min(x_1, ..., x_n). \tag{1}$$

Spannbreite

> [1] 9

Berechnen der Spannbreite mit range()

```
# Einlesen des Beispieldatensatzes
fname
       = file.path(getwd(), "10_Daten", "psychotherapie_datensatz.csv")
       = read.table(fname, sep = ".")
D
      = file.path(getwd(), "10 Abbildungen")
fdir
# Manuelle Spanntbreitenberechnung
       = D$Pre.BDI
                                           # double Vektor der Pre-BDT Werte Werte
x
x_max = max(x)
                                           # Maximum der TA1 Werte
x_min = min(x)
                                           # Mininum der TA1 Werte
   = x_max - x_min
                                           # Spannbreite
print(S)
> [1] 9
# automatische Spannbreitenberechnung
MinMax = range(x)
                                           # "automatische" Berechnung von min(x), max(x)
       = MinMax[2] - MinMax[1]
                                           # Spannbreite
print(S)
```

 ${\sf Spannbreite}$

Stichprobenvarianz

Stichprobenstandardabweichung

Selbstkontrollfragen

Definition (Stichprobenvarianz, empirische Stichprobenvarianz)

 $x = (x_1, ..., x_n)$ sei ein Datensatz. Die Stichprobenvarianz von x ist definiert als

$$S^{2} := \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$
 (2)

und die empirische Stichprobenvarianz von x ist definiert als

$$\bar{S}^2 := \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2. \tag{3}$$

Bemerkungen

- S^2 ist ein unverzerrter Schätzer von $\mathbb{V}(X)$, \tilde{S}^2 ist ein verzerrter Schätzer $\mathbb{V}(X)$.
- Für $n \to \infty$ gilt $\frac{1}{n} \approx \frac{1}{n-1}$, \tilde{S}^2 ist ein asymptotisch unverzerrter Schätzer von $\mathbb{V}(X)$.
 \tilde{S}^2 ist der ML Schätzer, S^2 ist der ReML Schätzer von σ^2 bei $X_1,...,X_n \sim N(\mu,\sigma^2)$.
- Es gelten

$$\tilde{S}^2 = \frac{n-1}{n} S^2, S^2 = \frac{n}{n-1} \tilde{S}^2 \text{ und } 0 \le \tilde{S}^2 \le S^2.$$
 (4)

Berechnen der Stichprobenvarianz mit var ()

```
= D$Pre_BDT
                                                # double Vektor der Pre-RDT Werte Werte
Y
            = length(x)
                                                # Anzahl der Werte
n
            = (1/(n-1))*sum((x - mean(x))^2) # Stichprobenvarianz
S2
print(S2)
> [1] 3.03
           = var(x)
                                                # "automatische" Stichprobenvarianz
S2
print(S2)
> [1] 3.03
S2 tilde
           = (1/n)*sum((x - mean(x))^2)
                                                # Empirische Stichprobenvarianz
print(S2_tilde)
> [1] 3
S2_tilde
           = ((n-1)/n)*var(x)
                                                # "automatische" empirische Stichprobenvarianz
print(S2_tilde)
```

Theorem (Stichprobenvarianz bei linear-affinen Transformationen)

 $x=(x_1,...,x_n)$ sei ein Datensatz mit Stichprobenvarianz S_x^2 und $y=(ax_1+b,...,ax_n+b)$ sei der mit $a,b\in\mathbb{R}$ linear-affin transformierte Datensatz mit Stichprobenvarianz S_y^2 . Dann gilt

$$S_y^2 = a^2 S_x^2. (5)$$

Beweis

$$S_y^2 := \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2 = \frac{1}{n-1} \sum_{i=1}^n (ax_i + b - (a\bar{x} + b))^2$$

$$= \frac{1}{n-1} \sum_{i=1}^n (ax_i + b - a\bar{x} - b)^2$$

$$= \frac{1}{n-1} \sum_{i=1}^n (a(x_i - \bar{x}))^2$$

$$= \frac{1}{n-1} \sum_{i=1}^n a^2 (x_i - \bar{x})^2 = a^2 \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2 = a^2 S_x^2$$
(6)

> [1] 12.1

Stichprobenvarianz bei linear-affinen Transformationen

```
# Stichprobenuarianz nach Transformation
       = D$Pre.BDI
х
                                               # double Vektor der Pre-BDI Werte Werte
S2x = var(x)
                                               # Stichprobenvarianz von x 1,...,x n
      = 2
                                               # Multiplikationskonstante
  = 5
                                               # Additionskonstante
      = a*x + b
                                               # y i = ax i + b
٧
S2y
       = var(y)
                                               # Stichprobenvarianz y 1,..., y n
print(S2y)
> [1] 12.1
# Stichprobenvarianz nach Theorem
S2y
       = a^2*S2x
                                               # Stichprobenvarianz y_1,...,y_n
print(S2y)
```

Theorem (Verschiebungssatz zur empirischen Stichprobenvarianz)

 $x=(x_1,...,x_n)$ sei ein Datensatz, $x^2:=(x_1^2,...,x_n^2)$ sei sein elementweises Quadrat und \bar{x} und \bar{x}^2 seien die respektiven Mittelwerte. Dann gilt $\tilde{S}^2=\overline{x^2}-\bar{x}^2 \tag{7}$

Beweis

$$\bar{S}^{2} := \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}
= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{2} - 2x_{i}\bar{x} + \bar{x}^{2})
= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - 2\bar{x}\frac{1}{n} \sum_{i=1}^{n} x_{i} + \frac{1}{n} \sum_{i=1}^{n} \bar{x}^{2}
= \bar{x}^{2} - 2\bar{x}\bar{x} + \frac{1}{n}n\bar{x}^{2}
= \bar{x}^{2} - 2\bar{x}^{2} + \bar{x}^{2}
= \bar{x}^{2} - \bar{x}^{2}$$
(8)

> [1] 3.03

Verschiebungssatz zur empirischen Stichprobenvarianz

```
# Direkte Berechnung der empirischen Stichprobenvarianz
           = D$Pre.BDT
                                                 # double Vektor der Pre-BDI Werte Werte
x
         = length(x)
                                                 # Anzahl Datenpunkte
n
x bar = mean(x)
                                                 # Stichprobenmittel
S2 tilde = ((n-1)/n)*var(x)
                                                 # empirische Stichprobenvarianz
print(S2_tilde)
> [1] 3
# Berechnung der empirischen Stichprobenvarianz mit Theorem
S2 tilde = mean(x^2) - (mean(x))<sup>2</sup> # \bar{x^2} - \bar{x^2} - \bar{x^2}
print(S2_tilde)
> [1] 3
# Das Theorem gilt nicht für die Stichprobenvarianz
S2
           = var(x)
                                                 print(S2)
```

Spannbreite Stichprobenvarianz Stichprobenstandardabweichung Selbstkontrollfragen

Definition (Stichprobenstandardabweichung, empirische)

 $x=(x_1,...,x_n)$ sei ein Datensatz. Die Stichprobenstandardabweichung von x ist definiert als

$$S := \sqrt{S^2} \tag{9}$$

und die empirische Stichprobenstandardabweichung von \boldsymbol{x} ist definiert als

$$\tilde{S} := \sqrt{\tilde{S}^2}.\tag{10}$$

Bemerkungen

- S ist ein verzerrter Schätzer von S(X).
- ullet S^2 misst Variabilität in quadrierten Einheiten, zum Beispiel Quadratmeter (m^2) .
- S misst Variabilität in unquadrierten Einheiten, zum Beispiel Meter (m).
- Es gilt

$$\tilde{S} = \sqrt{(n-1)/n}S. \tag{11}$$

Berechnung der Stichprobenstandardabweichung mit sd()

Manuelle Berechnung der Stichprobenstandardabweichung

```
# double Vektor der Pre-BDI Werte Werte
        = D$Pre.BDI
       = length(x)
                                                # Anzahl der Werte
        = sqrt((1/(n-1))*sum((x - mean(x))^2)) # Standardabweichung
print(S)
> [1] 1.74
# Automatische Berechnung der Stichprobenstandardabweichung
        = sd(x)
                                                 # "automatische" Berechnung
print(S)
> [1] 1.74
# Empirische Standardabweichung
S tilde = sqrt((1/(n))*sum((x - mean(x))^2)) # empirische Standardabweichung
print(S_tilde)
> [1] 1.73
S_{tilde} = sqrt((n-1)/n)*sd(x)
                                               # empirische Standardabweichung
print(S_tilde)
> [1] 1.73
```

Theorem (Stichprobenvarianz bei linear-affinen Transformationen)

 $x=(x_1,...,x_n)$ sei ein Datensatz mit Stichprobenstandardabweichung S_x und $y=(ax_1+b,...,ax_n+b)$ sei der mit $a,b\in\mathbb{R}$ linear-affin transformierte Datensatz mit Stichprobenstandardabweichung S_y . Dann gilt

$$S_y = |a|S_x. (12)$$

Beweis

$$S_{y} := \left(\frac{1}{n-1} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}\right)^{1/2} = \left(\frac{1}{n-1} \sum_{i=1}^{n} \left(ax_{i} + b - (a\bar{x} + b)\right)^{2}\right)^{1/2}$$

$$= \left(\frac{1}{n-1} \sum_{i=1}^{n} \left(a(x_{i} - \bar{x})\right)^{2}\right)^{1/2}$$

$$= \left(\frac{1}{n-1} \sum_{i=1}^{n} a^{2}(x_{i} - \bar{x})^{2}\right)^{1/2}$$

$$= \left(a^{2}\right)^{1/2} \left(\frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\right)^{1/2}$$

Also gilt $S_y=aS_x$, wenn $a\geq 0$ und $S_y=-aS_x$, wenn a<0 . Dies aber entspricht $S_y=|a|S_x$.

Stichprobenstandardabweichung bei linear-affinen Transformationen

```
# a >= 0
x = D$Pre.BDT
                      # double Vektor der Pre-BDT Werte Werte
Sx = sd(x)
                      # Stichprobenvarianz von x
a = 2
                      # Multiplikationskonstante
                    # Additionskonstante
b = 5
y = a*x + b  # y i = ax i + b
Sy = sd(y)
                      # Stichprobenvarianz von v
print(Sy)
> [1] 3.48
Sy = a*Sx
                       # Stichprobenvarianz von y
print(Sy)
> [1] 3.48
\# a < 0
x = D$Pre.BDT
                       # double Vektor der Pre-BDT Werte Werte
Sx = sd(x)
                       # Stichprobenvarianz von x
a = -3
                       # Multiplikationskonstante
b = 10
                       # Additionskonstante
y = a*x + b
                      # y i = ax i + b
Sy = sd(y)
                       # Stichprobenvarianz von y
print(Sy)
> [1] 5.22
Sv = (-a)*Sx
                       # Stichprobenvarianz von y
print(Sy)
> [1] 5.22
```

Spannbreite Stichprobenvarianz Stichprobenstandardabweichung Selbstkontrollfragen

Selbstkontrollfragen

- 1. Geben Sie die Definition der Spannbreite eines Datensatzes wieder.
- 2. Berechnen Sie die Spannbreite der Post.BDI Daten.
- 3. Geben Sie die Definition der Stichprobenvarianz und der empirischen Stichprobenvarianz wieder.
- 4. Berechnen Sie die Stichprobenvarianz und die empirische Stichprobenvarianz der Post.BDI Daten.
- 5. Geben Sie das Theorem zur Stichprobenvarianz bei linear-affinen Transformationen wieder.
- 6. Geben Sie den Verschiebungssatz zur empirischen Stichprobenvarianz wieder.
- Geben Sie die Definition der Stichprobenstandardabweichung und der empirischen Stichprobenstandardabweichung wieder.
- Berechnen Sie die Stichprobenstandardabweichung und die empirische Stichprobenstandardabweichung der Post.BDI Daten.
- 9. Geben Sie das Theorem zur Stichprobenstandardabweichung bei linear-affinen Transformationen wieder.