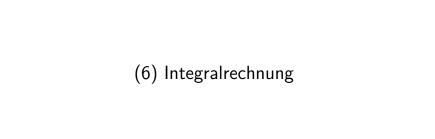


Grundlagen der Mathematik und Informatik

BSc Psychologie WiSe 2021/22

Prof. Dr. Dirk Ostwald



Integralrechnung

Übersicht

- Integrale kommen in der probabilistischen Datenanalyse an vielen Stellen vor:
 - WDF Definition und Berechnen von Wahrscheinlichkeiten aus WDF
 - · Beziehung von WDF und KVF
 - Erwartungswerte inklusive Varianz und Kovarianz
 - и.v.a.m.
- Ziel hier ist es, zentrale Begriffe aus der Schulmathematik zu wiederholen.
- In der Schulmathematik wird üblicherweise das Riemannintegral betrachtet.
- Zentrale Begriffe sind Stammfunktion, unbestimmtes Integral, bestimmtes Integral, Hauptsätze der Differential- und Integralrechnung, uneigentliches Integral, und mehrdimensionales Integral.
- Der Fokus liegt auf der Klärung von Begriffen und Symbolen, nicht dem Rechnen.
- Auf die Einführung des modernen Integralbegriffs nach Lebesgue wird verzichtet.

Unbestimmte Integrale Bestimmte Integrale Uneigentliche Integrale Mehrdimensionale Integrale Selbstkontrollfragen

Bestimmte Integrale

Uneigentliche Integrale

Mehrdimensionale Integrale

Definition (Stammfunktion, Unbestimmtes Integral)

Für ein Intervall $I\subset\mathbb{R}$ sei $f:I\to\mathbb{R}$ eine univariate reellwertige Funktion. Dann heißt eine differenzierbare Funktion $F:I\to\mathbb{R}$ mit der Eigenschaft

$$F' = f \tag{1}$$

 ${\it Stammfunktion\ von\ }f.$ Ist F eine ${\it Stammfunktion\ von\ }f,$ dann heißt

$$\int f(x) dx := F(x) + c \text{ mit } c \in \mathbb{R}$$
 (2)

unbestimmtes Integral der Funktion f.

Bemerkungen

- Die Ableitung der Stammfunktion F von f ist f.
- ullet Das unbestimmte Integral ist die Gesamtheit aller Stammfunktionen von f
- Die Konstante $c \in \mathbb{R}$ heißt *Integrationskonstante*, es gilt $\frac{d}{dx}c = 0$.
- Der Ausdruck $\int f(x) dx$ ist als F(x) + c definiert
- In $\int f(x) dx$ haben \int und dx keine eigentliche Bedeutung, f(x) heißt *Integrand*.

Theorem (Stammfunktionen elementarer Funktionen)

Für elementare Funktionen der Statistik ergeben sich folgende Stammfunktionen

Name	Definition	Stammfunktion
Polynomfunktionen	$f(x) := \sum_{i=0}^{n} a_i x^i$	$F(x) = \sum_{i=0}^{n} \frac{a_i}{i+1} x^{i+1}$
Konstante Funktion	f(x) := a	F(x) = ax
Identitätsfunktion	f(x) := x	$F(x) = \frac{1}{2}x^2$
Lineare Funktion	f(x) := ax + b	$F(x) = \frac{1}{2}ax^2 + bx$
Quadratfunktion	$f(x) := x^2$	$F(x) = \frac{1}{3}x^3$
Exponentialfunktion	$f(x) := \exp(x)$	$F(x) = \exp(x)$
Logarithmusfunktion	$f(x) := \ln(x)$	$F(x) = x \ln x - x$

Bemerkung

• Beweise ergeben sich direkt durch Ableiten der Stammfunktionen.

Theorem (Rechenregeln für Stammfunktionen)

f und g seien univariate reellwertige Funktion, die Stammfunktionen besitzen, und g sei invertierbar. Dann gelten folgende Rechenregeln für die Bestimmung von Integralen

(1) Summenregel

$$\int af(x) + bg(x) dx = a \int f(x) dx + b \int g(x) dx \text{ für } a, b \in \mathbb{R}$$
 (3)

(2) Partielle Integration

$$\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx \tag{4}$$

(3) Substitutionsregel

$$\int f(g(x))g'(x) dx = \int f(t) dt \text{ mit } t = g(x)$$
(5)

Bemerkung

• Für die Herleitung der Summenregel wird auf die einschlägige Literatur verwiesen.

Beweis

Die Rechenregel der partiellen Integration ergibt sich durch Integration der Produktregel der Differentiation. Wir erinnern uns, dass gilt

$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x).$$
 (6)

Integration beider Seiten der Gleichung und Berücksichtigung der Summenregel für Stammfunktionen ergibt dann

$$f(f(x)g(x))' dx = \int f'(x)g(x) + f(x)g'(x) dx$$

$$\Leftrightarrow f(x)g(x) = \int f'(x)g(x) dx + \int f(x)g'(x) dx$$

$$\Leftrightarrow \int f'(x)g(x) dx = f(x)g(x) - \int f(x)g'(x) dx$$

$$\Leftrightarrow f(x)g(x) = \int f(x)g(x) dx = \int f(x)g(x) dx$$

$$\Leftrightarrow f(x)g(x) = \int f(x)g(x) dx = \int f(x)g(x) dx$$

$$\Leftrightarrow f(x)g(x) = \int f(x)g(x) dx = \int f(x)g(x) dx$$

$$\Leftrightarrow f(x)g(x) = \int f(x)g(x) dx = \int f(x)g(x) dx$$

Die Substitutionsregel ergibt sich für F'=f durch Anwendung der Kettenregel der Differentiation auf die verkettete Funktion F(g). Speziell gilt zunächst

$$(F(g(x)))' = F'(g(x))g'(x) = f(g(x))g'(x)$$
 (8)

Integration beider Seiten der Gleichung

$$(F(g(x)))' = f(g(x))g'(x)$$
 (9)

ergibt dann

$$f(F(g(x)))' dx = ff(g(x))g'(x) dx$$

$$\Leftrightarrow F(g(x)) + c = ff(g(x))g'(x) dx$$

$$\Leftrightarrow ff(g(x))g'(x) dx = ff(t) dt \text{ mit } t := g(x).$$
(10)

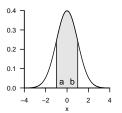
Dabei ist die rechte Seite der letzten obigen Gleichung zu verstehen als F(g(x)) + c, also als Stammfunktion von f evaluiert an der Stelle t := g(x). Das dt ist nicht durch dg(x) zu ersetzen, sondern rein notationstechnischer Natur.

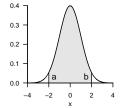
Bestimmte Integrale

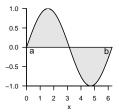
Uneigentliche Integrale

Mehrdimensionale Integrale

Bestimmtes Integral von $f:[a,b] ightarrow \mathbb{R}$







Definition (Zerlegung eines Intervalls, Feinheit)

Es sei $[a,b]\subset\mathbb{R}$ ein Intervall und $x_0,x_1,x_2,...,x_n\in[a,b]$ eine Menge von Punkten mit

$$a =: x_0 < x_1 < x_2 \dots < x_n := b \tag{11}$$

mit

$$\Delta x_i := x_i - x_{i-1} \text{ für } i = 1, ..., n.$$
(12)

Dann heißt die Menge

$$Z := \{ [x_0, x_1], [x_1, x_2], ..., [x_{n-1}, x_n] \}$$
(13)

der durch $x_0, x_1, x_2, ..., x_n$ definierten Teilintervalle von [a,b] Zerlegung von [a,b]. Weiterhin heißt

$$Z_{\mathsf{max}} := \max_{i \in n} \Delta x_i,\tag{14}$$

also die größte der Teilintervalllängen Δx_i , die Feinheit von Z.

Bemerkung

• Δx_i ist die Breite der Streifen in untenstehender Abbildung.

Definition (Riemannsche Summe)

 $f:[a,b] o \mathbb{R}$ sei eine beschränkte Funktion auf [a,b], d.h. |f(x)| < c für $0 < c < \infty$ und alle $x \in [a,b]$, Z sei eine Zerlegung von [a,b] mit Teilintervalllängen Δx_i für i=1,...,n. Weiterhin sei für i=1,...,n ξ_i ein beliebiger Punkt im Teilintervall $[x_{i-1},x_i]$ der Zerlegung Z. Dann heißt

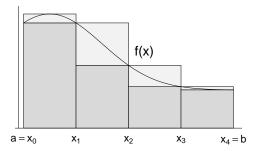
$$R(Z) := \sum_{i=1}^{n} f(\xi_i) \Delta x_i \tag{15}$$

Riemannsche Summe von f auf [a,b] bezüglich der Zerlegung Z.

Bemerkungen

- ullet Wählt man in jedem $[x_{i-1},x_i]$ das Maximum von f, ergibt sich die Riemannsche Obersumme.
- ullet Wählt man in jedem $[x_{i-1},x_i]$ das Minimum von f, ergibt sich die Riemannsche Untersumme.
- Für $\Delta x_i \rightarrow 0, i=1,...,n$ geht der Unterschied zwischen Ober- und Untersumme gegen 0.

Zerlegung und Riemann Ober- und Untersummen für $f:[a,b] \to \mathbb{R}$



Theorem (Riemannsches Integral)

 $f:[a,b] \to \mathbb{R}$ sei eine beschränkte reellwertige Funktion auf [a,b]. Weiterhin sei für $Z_k, k=1,2,3,\ldots$ eine Folge von Zerlegungen von [a,b] mit zugehörigen Feinheiten $Z_{k,\max}$. Wenn für jede Folge von Zerlegungen Z_1,Z_2,\ldots mit $|Z_{k,\max}| \to 0$ für $k \to \infty$ und für beliebig gewählte Punkte $\xi_{ki}, i=1,\ldots,n$ im Teilintervall $[x_{k,i-1},x_{k,i}]$ der Zerlegung Z_k gilt, dass die Folge der zugehörigen Riemannschen Summen $R(Z_1),R(Z_2),\ldots$ gegen den gleichen Grenzwert strebt, dann heißt f auf [a,b] integrierbar. Der entsprechende Grenzwert der Folge von Riemannschen Summen wird bestimmtes Riemannsches Integral genannt und mit

$$\int_{a}^{b} f(x) dx := \lim_{k \to \infty} R(Z_k) \text{ für } |Z_{k,\text{max}}| \to 0$$
 (16)

bezeichnet.

Bemerkungen

- $\bullet \;\; {\rm F} {\rm ür} \; f>0 \; {\rm ist} \; \int_a^b f(x) \; dx \; {\rm der} \; {\rm F} {\rm l\"{a}} {\rm cheninhalt} \; {\rm zwischen} \; {\rm den} \; f(x) \; {\rm und} \; {\rm der} \; x {\rm -Achse}$
- Generell ist $\int_a^b f(x) dx$ der vorzeichenbehaftete Flächeninhalt den f(x) und der x-Achse.
- Positive und negative Flächeninhalt gleichen einander aus.
- $\int_{a}^{b} f(x) dx$ ist als Mittelwert von f auf [a, b] zu verstehen.

Theorem (Rechenregeln für bestimmte Integrale)

Es seien f und g integrierbare Funktionen auf [a,b]. Dann gelten folgende Rechenregeln:

(1) Linearität. Für $c_1, c_2 \in \mathbb{R}$ gilt

$$\int_{a}^{b} (c_1 f(x) + c_2 g(x)) dx = c_1 \int_{a}^{b} f(x) dx + c_2 \int_{a}^{b} f(x) dx.$$
 (17)

(2) Additivität. Für a < c < b gilt

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$
 (18)

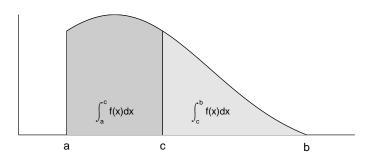
(3) Vorzeichenwechsel bei Umkehrung der Integralgrenzen

$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx.$$
 (19)

Bemerkung

- Für eine formale Herleitung verweisen wir auf die einschlägige Literatur.
- Eine graphische Darstellung der Additivität findet sich untenstehend.

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx.$$

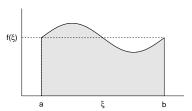


Theorem (Mittelwertsatz der Integralrechnung)

Für eine stetige Funktion $f:[a,b]\to\mathbb{R}$ existiert ein $\xi\in]a,b[$ mit

$$\int_{a}^{b} f(x) \, dx = f(\xi)(b - a) \tag{20}$$

• Statt eines Beweises verweisen wir auf untenstehende graphische Darstellung



Theorem (Erster Hauptsatz der Differential- und Integralrechnung)

Ist $f:I o \mathbb{R}$ eine auf dem Intervall $I \subset \mathbb{R}$ stetige Funktion, dann ist die Funktion

$$F: I \to \mathbb{R}, x \mapsto F(x) := \int_{a}^{x} f(t) dt \text{ mit } x, a \in I$$
 (21)

eine Stammfunktion von f.

Beweis

Wir betrachten den Differenzquotienten

$$\frac{1}{h}(F(x+h) - F(x)) \tag{22}$$

Mit der Definition $F(x):=\int_a^x f(t)\,dt$ und der Additivität des bestimmten Integrals gilt dann

$$\frac{1}{h}(F(x+h) - F(x)) = \frac{1}{h} \left(\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right) = \frac{1}{h} \int_{x}^{x+h} f(t) dt$$
 (23)

Mit dem Mittelwertsatz der Integralrechnung gibt es also ein $\xi \in]x, x+h[$, so dass

$$\frac{1}{h}(F(x+h) - F(x)) = f(\xi) \tag{24}$$

Grenzwertbildung ergibt dann

$$\lim_{h\to 0} \frac{1}{h} (F(x+h) - F(x)) = \lim_{h\to 0} f(\xi) \text{ für } \xi \in]x, x+h[\Leftrightarrow F'(x) = f(x). \tag{25}$$

Grundlagen der Mathematik und Informatik | © 2022 Dirk Ostwald CC BY-NC-SA 4.0 | Folie 19

Theorem (Zweiter Hauptsatz der Differential- und Integralrechnung)

Ist F eine Stammfunktion einer stetigen Funktion $f:I\to\mathbb{R}$ auf einem Intervall I, so gilt für $a,b\in I$ mit a< b

$$\int_{a}^{b} f(x) dx = F(b) - F(a) =: F(x)|_{a}^{b}$$
 (26)

Beweis

Mit den Rechenregeln für bestimmte Integrale und dem ersten Hauptsatz der Differential- und Integralrechnung ergibt sich

$$F(b) - F(a) = \int_{\alpha}^{b} f(t) dt - \int_{\alpha}^{a} f(t) dt = \int_{a}^{b} f(x) dx$$
 (27)

Bestimmte Integrale

Uneigentliche Integrale

Mehrdimensionale Integrale

Uneigentliche Integrale

Definition (Uneigentliche Integrale)

 $f:\mathbb{R}\to\mathbb{R}$ sei eine univariate reellwertige Funktion. Mit den Definitionen

$$\int_{-\infty}^b f(x)\,dx := \lim_{a\to -\infty} \int_a^b f(x)\,dx \text{ und } \int_a^\infty f(x)\,dx := \lim_{b\to \infty} \int_a^b f(x)\,dx \tag{28}$$

und der Additivität von Integralen

$$\int_{-\infty}^{\infty} f(x) dx = \int_{-\infty}^{b} f(x) dx + \int_{b}^{\infty} f(x) dx$$
 (29)

wird der Begriff des bestimmten Integrals auf die unbeschränkten Integrationsintervalle $]-\infty,b],$ $[a,\infty[$ und $]-\infty,\infty[$ erweitert. Integrale mit unbeschränkten Integrationsintervallen heißen *uneigentliche Integrale.* Wenn die entsprechenden Grenzwerte existieren, sagt man, dass die uneigentlichen Integrale *konvergieren.*

Bemerkung

• Für die WDF f einer Zufallsvariable ist die Forderung $\int_{-\infty}^{\infty} f(x) \, dx = 1$ zentral.

Uneigentliche Integrale

Beispiel (Uneigentliches Integral)

Wir betrachten das uneigentliche Integral $\int_{1}^{\infty} \frac{1}{x^2} dx$.

Nach den Festlegungen in der Definition uneigentlicher Integrale gilt

$$\int_{1}^{\infty} \frac{1}{x^{2}} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^{2}} dx.$$
 (30)

Mit der Stammfunktion $F(x)=-x^{-1}$ von $f(x)=x^{-2}$ ergibt sich für das bestimmte Integral in obiger Gleichung

$$\int_{1}^{b} \frac{1}{x^{2}} dx = F(b) - F(1) = -\frac{1}{b} - \left(-\frac{1}{1}\right) = -\frac{1}{b} + 1.$$
 (31)

Es ergibt sich also

$$\int_{1}^{\infty} \frac{1}{x^2} dx = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{x^2} dx = \lim_{b \to \infty} \left(-\frac{1}{b} + 1 \right) = -\lim_{b \to \infty} \frac{1}{b} + \lim_{b \to \infty} 1 = 0 + 1 = 1.$$
 (32)

Bestimmte Integrale

Uneigentliche Integrale

Mehrdimensionale Integrale

Definition (Mehrdimensionale Integrale)

 $f:\mathbb{R}^n
ightarrow \mathbb{R}$ sei eine multivariate reellwertige Funktion. Dann heißen Integrale der Form

$$\int_{a_1 \setminus \dots \times [a_n, b_n]} f(x) \, dx = \int_{a_1}^{b_1} \dots \int_{a_n}^{b_n} f(x_1, \dots, x_n) \, dx_1 \dots dx_n \tag{33}$$

mehrdimensionale bestimmte Integrale auf Hyperrechtecken. Weiterhin heißen Integrale der Form

$$\int_{\mathbb{R}^n} f(x) dx = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, ..., x_n) dx_1 ... dx_n$$
(34)

mehrdimensionale uneigentliche Integrale.

Bemerkungen

- Man kann multivariate reellwertige Funktion nicht nur auf Hyperrechtecken, sondern im Prinzip auf beliebigen Hyperflächen integrieren. Dies kann sich jedoch oft schwierig gestalten.
- Der Satz von Fubini besagt, dass man mehrdimensionale Integrale in beliebiger Koordinatenfolge auswerten kann, also dass zum Beispiel

$$\int_{a_1}^{b_1} \left(\int_{a_2}^{b_2} f(x_1, x_2) \, dx_2 \right) \, dx_1 = \int_{a_2}^{b_2} \left(\int_{a_1}^{b_1} f(x_1, x_2) \, dx_1 \right) \, dx_2. \tag{35}$$

ullet Für die WDF eines Zufallsvektors ist die Forderung $\int_{\mathbb{R}^n} f(x) \ dx = 1$ zentral.

Mehrdimensionale Integrale

Beispiel (Zweidimensionales Integral)

Wir betrachten das zweidimensionale bestimmte Integral der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto f(x_1, x_2) := x_1^2 + 4x_2$$
 (36)

auf dem Rechteck $[0,1] \times [0,1]$. In

$$\int_{0}^{1} \int_{0}^{1} x_{1}^{2} + 4x_{2} dx_{1} dx_{2} = \int_{0}^{1} \left(\int_{0}^{1} x_{1}^{2} + 4x_{2} dx_{1} \right) dx_{2}$$
 (37)

betrachten wir zunächst das innere Integral. x_2 nimmt hier die Rolle einer Konstanten ein. Eine Stammfunktion von $g(x_1):=x_1^2+4x_2$ ist $G(x_1)=\frac{1}{3}x_1^3+4x_2x_1$, wie man sich durch Ableiten von G überzeugt. Es ergibt sich also für das innere Integral

$$\int_{0}^{1} x_{1}^{2} + 4x_{2} dx_{1} = G(1) - G(0) = \frac{1}{3} \cdot 1^{3} + 4x_{2} \cdot 1 - \frac{1}{3} \cdot 0^{3} - 4x_{2} \cdot 0 = \frac{1}{3} + 4x_{2}$$
 (38)

Betrachten des äußeren Integrals in Gleichung (37) ergibt dann mit der Stammfunktion $H(x_2)=\frac{1}{3}x_2+2x_2^2$ von $h(x_2):=\frac{1}{3}+4x_2$, dass

$$\int_{0}^{1} \int_{0}^{1} x_{1}^{2} + 4x_{2} dx_{1} dx_{2} = \int_{0}^{1} \frac{1}{3} + 4x_{2} dx_{2} = H(1) - H(0) = \frac{1}{3} \cdot 1 + 4 \cdot 1^{2} - \frac{1}{3} \cdot 0 + 4 \cdot 0^{2} = \frac{13}{3}.$$
(39)

Bestimmte Integrale

Uneigentliche Integrale

Mehrdimensionale Integrale

- 1. Definieren Sie den Begriff der Stammfunktion einer univariaten reellwertigen Funktion.
- 2. Definieren Sie den Begriff des unbestimmten Integrals einer univariaten reellwertigen Funktion.
- 3. Erläutern Sie den Begriff des Riemanschen Integrals.
- 4. Geben Sie den ersten Hauptsatz der Differential- und Integralrechnung wieder.
- 5. Geben Sie den zweiten Hauptsatz der Differential- und Integralrechnung wieder.
- 6. Erläutern Sie den Begriff des uneigentlichen Integrals.
- 7. Erläutern Sie den Begriff des mehrdimensionalen Integrals.
- 8. Berechnen Sie das bestimmte Integral $\int_0^1 2x \, dx$.